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Abstract 

Using shopping activity as an example, this paper presents a probabilistic model that 
can be used to estimate shopping transport energy consumption in the absence of 
empirical data and analyse the potentials of reducing shopping trips by car. Based 
on the combination of Huff model and Gravity model, some new metrics were 
developed to quantify the shopping activities. The property of shopping facilities, 
spatial distribution, travel distance, travel patterns are the key part of model to 
determine how much transport energy is consumed. With the assistance of GIS 
system, an international comparison between the two cities in New Zealand and 
China was conducted using this model to investigate the differences and relevant 
factors that can affect transport energy use. The results showed that the residential 
density plays a critical role in reducing shopping transport energy use, the majority of 
residence living in both cities are adaptable to non-motorized trips in terms of 
essential shopping activities.  

1.Introduction 
     The reliance on energy in transport and rapidly growing transport CO2 emissions are a global 

problem. In New Zealand, transport is the third largest sector of CO2 equivalent (CO2-e) greenhouse 
gas (GHG) emissions, contributing to 18.1% of total emissions in 2012. According to the Ministry for 
the Environment (2014), a provisional post-2020 target of 30 percent below NZ’s 2005 greenhouse 
gas emissions (GHG) level by 2030 should be met. To mitigate the impacts of Climate Change, it is 
estimated a 72%-42% reduction in CO2 emissions is required by 2050.  Almost 87% population of 
New Zealand live in cities, which are the main focus area for transport energy consumption. 
Accordingly reductions in transport energy consumption can contribute to this mitigation target, 
projected energy efficiency and vehicle performance improvements could reduce final demand by 
40% and transport CO2 emissions by 15%-40% below baseline (IPCC, 2014). It is widely 
acknowledged that new energy vehicles, mixed land use, transit-oriented transport system and 
compact urban form can lead to more active mode trips and reduce the heavy dependence on fossil 
fuel. Although the considerable emphasis on sustainability with more renewable energy and green 
technologies has been integrated into development plans in many countries, it is believed that the 
majority of countries are still far from achieving fully sustainable energy systems (The World Energy 
Council, 2012). Moreover, owing to the peak oil risks and unstable price of petroleum, the need to 
keep the balance of energy supply-demand becomes more urgent than before. Also China, as a 
growing economy without sufficient resources, has attached much importance to sustainable 
development in consideration of energy saving and environmental protection. There is not enough 
space for transport infrastructure to accommodate a large vehicle fleet. The negative impacts of 
massive motorization in China such as traffic congestion and air pollution will be even more serious 
if the dependence on motor vehicle is not effectively controlled (Kenworthy& Hu,2002). In fact, 
human beings have adaptive capacity to cope with changes in their living environment.   

Within an interactive urban transport system, people could adjust their travel behaviour to meet 
their trip purposes and participate economic activities when land use, transport network or 
socioeconomic condition is changed. For a car driver, if he or she could access as many as places by 
alternative travel modes without wasting too much time, he or she would have high adaptive 



capacity under the condition of energy constraints. For a city or city area, if the majority of activities 
could be accomplished efficiently without using private cars, its potential in low carbon travel is 
likely to increase. Living in this area, people’s living and trips would not be severely affected given 
policies such as restrictions on car driving to reduce CO2 emissions.  Based on Huff shopping 
model(Huff,1963), this paper introduces new measures to quantify shopping activities and develops 
a comprehensive analytical methodology that simulates urban shopping trips to calculate shopping 
transport energy use and explore urban adaptive potentials for low carbon shopping trips(i.e. 
walking and cycling). In this paper, only the spatial factors and travel patterns are considered, the 
socioeconomic factors are neglected due to the lack of data. All the trips are home based excluding 
the return-to-home trip legs. 

2. Terms and definitions 
2.1 Essentiality classification for shopping  

It is revealed by surveys of travel behaviour that people rate as ’unnecessary’ or ‘discretionary’ as 
many as 30% of their trips(Gordon et al.1988;Cevero and RADISCH,1996; Banister et al.,1997). Susan 
and Shannon(2010) quantified the relative importance of each trip for choosing which trips to take 
and which activities are preferable. Based on the essentiality theory from Susan, the shopping 
activity is further refined and divided into three classes: 

Essential goods (Dietary needs such as foods and drink):  the importance and frequency is highest 
to human life, which could be accessible in such facilities as grocery store, market, supermarket, 
department store. 

Necessary goods (Clothes, appliance, communication): the importance and frequency is moderate 
to human life, which could be accessible in supermarket, department store, exclusive store. 

Optional goods (upmarket consumption or leisure expense such as flower, pet, antique, jewel): 
the importance and frequency is relatively low to the majority of people, which could be accessible 
in department store, shopping mall, exclusive store. 

2.2 Huff model 
The Huff model(Huff,1963) is a spatial interaction model that calculates gravity-based probabilities 

of consumers at each origin accessing each shopping facility in the study area. As a gravity model, 
the Huff model is heavily dependent on impedance such as trip distance or travel time. The 
definition of the attractiveness of a shopping facility is not generalized, and owing to the lack of 
available data, only few parameters are used to measure the possibility of consumers patronizing 
each facility as below:  

Scale: The size of shopping facility, A. 

    For grocery store: the value is set at 20-100 m2. 

    For supermarket and market: the value is set at 100-5000 m2. 

    For department store and shopping mall: the value is greater than 10000 m2 



Attractor: The frequency to this facility based on essentiality categories, At. For example, the 
attractor of a grocery store or supermarket or department-store is set as 3, the clothing store is set 
with 2, the antique store is with 1.     

  Trip momentum: The trip potential from origin i to destination j. Based on the gravity model in 
combination with Huff model, the calculation of trip potential is calculated from the following 
equation: 

            Wij=(A ×  At )/dij
2                                                                                                                                                                                    (1) 

    Where dij is the minimum distance between origin i and destination j. 

Trip probability:  The probability from origin i to facility j, which is normalised as below: 

          Pij = Wij/ ∑Wij                                                                                                            (2) 

2.3 Shopping value 
    The measurement to evaluate the level of shopping prosperity in an area is usually divided into a 
number of dimensions including diversity, quantity, Scale etc. To simplify the calculation, the 
conception of shopping value is created to represent the average shopping prosperity in certain area, 
which is illustrated as below: 

          (SV)i =∑ (𝐴𝑗𝑨𝒕𝑗)
𝑛

𝑗=1
                                                                                                 (3) 

Where (SV)I is the overall shopping value in a study area i, 𝐴𝑗 is the area of facility j, 𝑨𝒕𝑖 is the 
essentiality of facility j.     

2.4 Local weighted shopping activity value 
        The term of shopping value is a quantitative measure to describe the level of shopping service in 
each cell. Nevertheless, for each origin i, the overall shopping activities it can access within a city is 
distinctive depending on its location, distance to each shopping facility and the attractiveness of 
each shopping facility accessible. It is obvious that the shopping activities for people living in the city 
centre are different from those living in suburb areas. Accordingly the term of ‘local weighted 
shopping activity value’ is defined as the function of shopping frequency, shopping value in 
destination j and probability to this destination (see Equation (4)).  

                               LSVi=∑ (𝑓𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔 × 𝑆𝑉𝑗  × 𝑝𝑖𝑗)
𝑛

𝑗=1
                                                                     (4) 

          Where LSVi  is the overall accessible shopping value in origin i, 𝑓𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔 is the annual shopping 
frequency in origin i, which can be obtained from the travel survey. SVj is the shopping value in 
destination j, 𝑝𝑖𝑗  is the probability from origin i to destination j. 



3.Methodology 
3.1Spatial analysis for shopping facilities 
3.1.1 Mesh grid simplification for study area 
    To simplify the analysis and reduce the workload, the study area is divided into a fishnet of 
rectangular cells using GIS tools. Each cell size is set as a 1km×1km square with a centroid (see 
Fig.1).The centroid is an agent representing the characteristics of origin or destination. For the 
people living in a cell, it is assumed that they have similar socioeconomic situation. The difference in 
age, income, personal travel preference are neglected due to the lack of data. All the houses in a cell 
were abstracted as a point (i.e. the centroid) when running GIS analysis.  

 

                                                                              Figure 1.  An example of urban grid 

3.1.2 Classification and quantification for shopping facilities 

All the shopping facilities are classified into different categories and assigned with distinctive 
values according to the rule of essentiality, then the shopping value in each cell is calculated as the 
function of number, scale and essentiality of shopping facilities.  An example of shopping value 
distribution in Beijing is presented in figure 2. For a study cell with massive shopping facilities or 
large scale shopping malls, the shopping value in this cell is assigned with high value(see the red cells 
in Figure 2). A screenshot of one origin’s shopping trips matrix to each shopping destination is 
illustrated in table 1. As shown in table1, the coefficient ‘Value_shop’ describes the level of shopping 
activities in destination j, ‘prob_orig’ means the possibility from origin to this destination, ‘dist_orig’ 
means the minimum travel distance from origin to this destination.   

3.2 Transport energy calculation on shopping activities 
     Given the travel survey data and VKT data in a study area, the local area transport energy 
consumption could be calculated. However the detailed survey data on shopping activities are 
difficult to obtain and the individual shopping destinations are extremely random, hence in this 
paper, it is assumed that for an origin i, all the shopping destinations are accessible with certain 
possibilities. The trip from origin cell i  to each destination cell j  is iterated throughout all the study 
area, then a weighted shopping trip matrix of origin i  is generated as the shopping trip base data to 
analyse current shopping transport energy use.  

3.2.1 Transport patterns assignment 
    The detailed travel mode share data based on distance bins is required to do adaptive capability 

analysis. By doing so, the travel patterns in different distance bins are explicit to explore the 



possibility of travel mode shift. On the basis of literature view and travel survey data(Guo,2010; 
MOT,2015), an example of travel mode share matrix of Beijing and Christchurch is listed in tables 2 
and 3 respectively. 

 

                                    Figure 2. An example of shopping value distribution in Beijing 

     



 
Table 1. A screenshot of one origin's shopping trip matrix 

     

 

Trip Mode 
Split for 
Shopping 
(%) 

Distance Bins(km) 
d1(0-1) d2(1-2) d3(2-3) d4(3-5) d5(5-10) d6(>10) 

Walk 90 40 10 0 0 0 
Cycle 5 18 20 16 3 0 
Bus 3 5 10 10 15 15 
Car 2 47 60 74 82 85 
Subway 0 0 0 0 0 0 

Table 2. Distance-based trip mode split in Christchurch, New Zealand 

 

Trip Mode 
Split for 
Shopping 
(%) 

Distance Bins(km) 

d1(0-1) d2(1-2) d3(2-3) d4(3-5) d5(5-10) d6(>10) 

Walk 89 40 4 0 0 0 
Cycle 10 26 30 20 10 0 
Bus 0.4 10 30 35 32 35 
Car 0.6 10 20 25 35 40 
Subway 0 14 16 20 23 25 

Table 3. Distance-based trip mode split in Beijing, China 

      From above tables, it can be seen that the active mode share in Beijing has the same descending 
trend as Christchurch when the trip distance increases. The car tip share in Christchurch however is 



relatively higher than that in Beijing mainly because the car ownership ratio is different in these two 
countries.     

3.2.2 Shopping activities simulation 
        Using GIS tools and python programming, an activity-based transportation model is developed to 
simulate people’s shopping activities in a year.  

Study area input 

1. Demographic data: the population of residence living in a cell (persons/km2). 
2. Origins: the centroid of each cell is seen as the representative of local dwelling distribution.  
3. Destination: the centroid of each cell is seen as the representative of local shopping facilities 

distribution with distinctive shopping values. 
4. Transport networks:  the travel cost is defined by travel distance. The distance of 3km and 

5km is defined as comfort and maximum threshold for cycling travel respectively. 
Congestion and trip chains are neglected.         

Constant input 

5. Modal energy intensity, emmode 
{‘walk’: 0; ‘bicycle’:0; ‘bus’: 0.37MJ/(person×km); ‘subway’:0.26MJ/(person×km),  
‘car’:3.64MJ/(person×km)} 

6.  Shopping trip frequency fshopping. The average annual shopping frequency at the city level 
can be derived from travel survey data. 

7. Distance-based travel mode share data, Td .   

3.2.3 Transport Energy calculation 
       For an origin i, the transport energy consumption for shopping by travel mode is calculated from 
the following equation: 

        𝐸𝑖
𝑚 = ∑ (𝑑𝑖𝑗

𝑚 × 𝑒𝑚𝑚𝑜𝑑𝑒 × 𝑓𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔 × 𝑇𝑑 × 𝑝𝑖𝑗)
𝑛

𝑗=1
                                                  (5) 

       E=∑ (𝐸𝑖
𝑚)𝑛

𝑖=1  /population                                                                                                   (6) 

         Where E is the average transport energy use per person in origin i, 𝑑𝑖𝑗
𝑚 is the distance from 

origin i to destination j, 𝑒𝑚𝑚𝑜𝑑𝑒 is the energy intensity of travel mode, 𝑓𝑠ℎ𝑜𝑝𝑝𝑖𝑛𝑔 is the shopping 
frequency per year, 𝑇𝑑 is the distance-based travel mode share. 

3.2.4 Adaptive capacity analysis 
      In this paper, it is assumed that for a short distance trip (less than 3km for walking or 5km for 
cycling), the fossil fuel transport mode is not necessarily required and could be replaced with non-
motorized travel modes like walking and cycling. If the majority of shopping activities could be 
accomplished by active modes, the low carbon potential in this area would be the highest. In view of 
the limitation on space, only the adaptive capacity in walking and cycling was considered in this 
paper. The analysis on public transport adaptive capacity will be presented in the future.  



     The adaptive capacity for shopping is defined as the local weighted shopping value within walking 
distance (0-1km) and cycling distance (0-5km). The higher the local shopping value, the more 
adaptable to non-motorized trips.  

Step 1. Shift all car trips within 1km into walk trips. 

Step 2. Shift all car trips between 1km and 5km into cycling trips. 

Step 3. Keep the car mode share beyond 5km constant. 

Step 4. Recalculate the local weighted shopping activity value of each cell assuming all the car trips 
within 5km are replaced with walk mode(<=1km) and cycling mode(<=3km or 5km) to see how much 
shopping value could be realized with 0 transport energy use.  

     It is not clear that how many shopping facilities would be critical to meet individual commercial 
requirement, also the question on how much adapted shopping value is satisfactory for consumers is 
difficult to define. In this paper, the 25 percentile of original local shopping value is used as the 
evaluation criteria to assess the impact of mode shift on essential shopping activities, the 75 
percentile of original local shopping value is used as the evaluation criteria to assess the impact of 
mode shift on necessary shopping activities. The ratio of population that can access essential and 
necessary shopping activities within non-motorized trip distance bins (0-1km,0-3km,0-5km) will be 
compared between the two cities.  

4. Case studies 
The method was applied into two cities in China and New Zealand to compare the shopping 
transport energy consumption and results of mode shifting. Beijing and Christchurch are completely 
different in terms of urban form, demography, transport systems. One is a megacity with highly 
mixed land use, high-rise buildings and dense population, the other one is a medium-sized city in a 
way of dispersal, low-density and separation. The urban area of Beijing is around 1368.32km2 with 
18,590,000 population, the Christchurch urban area is 607.73km2 with 381,800 residents (Fig.3 and 
Fig.5).  In the aspect of shopping activities, the geographic shopping value in each cell is calculated 
using Eq.(3) and mapped using GIS(see Fig.4 and Fig.6). From these maps, it can be seen that the 
average shopping value in Beijing is much higher than Christchurch, the city centre is the important 
concentration area with extensive shopping activities no matter in Beijing or Christchurch. The hot 
spot for shopping in Christchurch is more evenly distributed than that in Beijing. Nevertheless there 
are number of small shopping districts outside the urban area of Beijing city 



Figure 3. Population density distribution in Beijing  

(Unit: 10,000person/km2) 

 



Figure 4. Shopping value distribution in Beijing 

 

 

 



Figure 5. Population density distribution in Christchurch 

                                (Unit: person/km2) 

 

 

5. Discussion and analysis 
For each cell, the travel patterns and shopping values in different distance bins were calculated 

based on trip mode split for shopping. A cell close to the city centre of Beijing (cell A in Figure 7)and 
another one faraway(cell B in Figure 7) were selected as the example to show how the distance and 
shopping facility distribution affect trip frequency and shopping activities. Cell A is closer to the high-
value shopping districts resulting in higher frequencies and better shopping service available within 
5km. For people living in cell B, the motorized travel requirement is generated if they want to access 
more shopping facilities because of the lower level shopping services within short distance. By 
analysing the travel patterns in each cell, the adaptive capacity and relating shopping value at micro 
level could be derived as a close-up observation for analysis. 

 

 

 

 

 

Figure  6. Shopping value distribution in Christchurch 



 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7. Example of travel patterns in each cell 

A 

B 



Figure 9. Transport energy consumption distribution map of 
Christchurch 

    The calculation of transport energy consumption in each cell was iterated throughout Beijing and 
Christchurch using Eq.(5) and (6) and mapped by applying the interpolation method in GIS, which is 
shown in Fig.8 and Fig.9. For both cities, it is similar that the city centre and surrounding areas have 
the lowest transport consumption because of the higher density of population and higher level of 
shopping services. In the outskirt of Beijing city, there exists several regions with lower transport 
energy use due to the long distance to the city centre. Combined with the shopping value map in 
Beijing, the level of shopping services in these regions are fairly good reducing the travel demand to 
the city centre. Also in Christchurch city, the southwest area and are of the lowest transport energy 
use owing to the same reason.  Table. 4 is a comparative analysis on transport energy use, Vehicle 
Kilometres Travelled (VKT) and trip distance between Beijing and Christchurch. It is obvious that the 
motorized trips of Christchurch are much more than Beijing but the average trip distance is shorter 
owing to its smaller size of urban area. Therefore it is conceivable that a small-medium city has 
higher potentials for non-motorized trips than a large city. In particular, the calculated VKT value of 
Christchurch(1121km) based on this model is almost the same as the data (1170 VKT for shopping) 
derived from the travel survey by The Ministry of Transport and literature view (NZTA,2006; 
MOT,2015). Therefore, it might be an alternative measure to estimate the VKT data in a study area if 
there is no travel survey data available. 

 

Figure 8. Transport energy consumption distribution map of Beijing 



City Average transport 
energy use for 
shopping(MJ/person) 

Average weighted VKT 
for shopping(km/year) 

Average trip distance 
for shopping(km/day) 

Beijing 1286.78 301 11.08 
Christchurch 4137.80 1121 7.5 

Table 4. Comparison on travel patterns between Beijing and Christchurch 

    It is generally argued that the carbon emission is negatively related to the population density, 
which is testified by the transport energy consumption vs. population density analysis in Fig.10 and 
Fig.11. All the cells in each cities were transformed into scatter chart with a division line and a trend 
curve highlighted in these two figures. It can be seen that both transport energy consumptions have 
the similar descending trend as the population density increases. Quite a few of residence in 
Christchurch consume more than 2000MJ/year for shopping activities, however the majority of 
Beijing’s shoppers consume no more than 4000MJ/year, which mainly results from the differences in 
car ownership ratio and travel mode share.    

    

 

Figure 10. Correlation between transport energy use and population density in Christchurch 
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Figure 11.   Correlation between transport energy use and population density in Beijing 

 

The ratio of population with adaptive capacity greater than 25 percentile and 75 percentile were 
calculated in Beijing and Christchurch respectively (Table 5 and Table 6).  In table 5, there is no much 
difference between Beijing and Christchurch in terms of meeting essential shopping activities, most 
essential requirements can be accessible within short distances. Nevertheless with regard to the 
walking accessibility, Beijing is better than Christchurch with 20 percent residence being able to shop 
within 1 km. In table 6, the result of Christchurch is slightly better than Beijing, nearly half of 
population could realize necessary shopping activities without motorization requirement, however 
the ratio of people in Beijing who can realize their necessary shopping activities is less than 20 
percent although its shopping facility density is much higher than Christchurch. It is because in 
megacities, the increasing shopping facilities are more dispersed with the sprawling development of 
urban area, leading to more travel demand and longer trip distance (See Table. 3).   

 

City Ratio of  people with zero transport energy consumption adaptive capacity  
 
In 1km In 3km In 5km 

Beijing 20% 53.4% 70% 
Christchurch 11.4% 63% 80% 

Table 5. Comparison between Beijing and Christchurch by 25 percentile shopping value 

 

City Ratio of  people with zero transport energy consumption adaptive capacity  
 
In 1km In 3km In 5km 

Beijing 4% 12% 17.8% 
Christchurch 6.7% 18.4% 43.4% 

Table 6. Comparison between Beijing and Christchurch by 75 percentile shopping value 
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6. Conclusion 
   The model of this research presents a quantitative method to characterize shopping activities from 
the perspective of transport energy consumption.  It combines Huff shopping model and Gravity 
model with limited travel survey data to calculate shopping transport energy use, in which a novel 
method to quantify the ranking of shopping facilities and relating travel patterns was proposed. 
Simply by shifting motorized trips that could be performed by walking and cycling, the potential of 
non-motorized travel patterns can be analysed based on distance bins. The model was applied to 
two different cities to compare the influencing factors that can contribute to the reduction of 
transport energy use. The results provide evidences that the development in the city centre can lead 
to less travel energy consumption and shorter trip distances, higher population density can help to 
decrease motorized trips and a small-medium sized city might has higher adaptive capacity in 
meeting necessary shopping activities than a large city. For megacities like Beijing, the high density 
development does not necessarily mean to reduce motorized travel demand if the urban boundary 
is not effectively contained. With the extension of urban area boundary, the average trip distance 
would be longer resulting in the high possibility of motorized trips. Accordingly, how to improve 
public transportation systems to meet longer distance travel demand is the only efficient way to 
offset the impact of urban sprawling.  
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